

 1

1

Robust and Efficient Fuzzy
Match for Online Data Cleaning

S. Chaudhuri, K. Ganjan, V. Ganti, R. Motwani

Presented by
Aaditeshwar Seth

2

Motivation

• Data warehouse: Many input tuples
• Tuples can be erroneous

– Spelling mistakes
– Different syntactic representation

• How to clean them automatically?
• Assumptions

– Tuples are structured: Eg. schema matching has
already been done

– Some tuple fields are supposed to contain the same
values

3

Methodology

• Clean tuples are stored in reference table
• Fuzzy matching done to find best matching

clean tuples

 2

4

Challenges

• Scalability
– Reference table can be very large
– Volume of input tuples can be very large

• Domain specific enhancements should be
possible to add

• Should be able to build upon existing
relational DBMS
– No complex data structures for persistence

5

Solution outline

• Transform input tuple into reference tuple
• Similarity metric = 1 – (transformation cost)
• Flat edit distance not good

– Within a field, cannot distinguish between more and
less informative tokens

• Intuitively know Boing is more informative than Corporation
• Hence, match on Boing should mean high similarity
• Implies, should be expensive to transform input token into

Boing than into Corporation

• Attach weights to transformation costs for each
token

6

Solution outline: Cont…

• Use inverse token frequency for weight
assignment
– Tokens like Boing occur less than tokens like

Corporation
– Just a heuristic – pathological cases can exist

• Optimizations
– Do not compute exact transformation cost

• Match on sets of substrings instead

– Design efficient index on reference table

 3

7

Fuzzy matching similarity
function

• Input tuple u, reference tuple v
• Split into tokens

– Each token has weight
wTOKEN = log(|Ref Set| / freq(token, col))

• Find tc = edit distance for each token
• tc(u, v) = Summation of tc for each token
• fms(u, v) = 1 – min(tc(u, v) / Sum(wTOKEN), 1.0)

How is the minimum edit
distance calculated?
Many transformation
paths are possible.

• Not a problem with fmsapx

8

Approximate FMS

• Match on q-grams
B o e i n g

H1 3 2 1 0

H2 4 5 6 7

Min hash = {ing, boe}

B u e i n g

H1 8 2 1 0

H2 9 5 6 7

Min hash = {ing, uei}

• Hash functions avoid string comparison

9

Approximate FMS: Cont…

1. Test for
similarity of token
t with all tokens r
in same column,
and select Max

2. Multiply by
weight of
chosen Max
tuple r

3. Repeat
over all
tokens t in
same column

4. Repeat over
all columns, and
divide by total
weight

Cannot compute w(t)
from input u if spelling
mistake, or ordering diff

dq = 1 – 1/q. Factor of 2
implies
simmh(QG(t), QG(t)) = 0.5 ?

 4

10

Error Tolerant Index

• Index reference set on tid
• Index ETI on {q-gram, coordinate, column}

• Each q-gram
belongs to a token

• Each token has a
weight

• Token belongs to a
column

• Coordinate
indicates hash
index: extra level
of indirectionWhat if same q-gram

belongs to multiple
tokens? Overwriting!

11

Query processing

• Find all tokens of input tuple u
• Find min-hash signature of all tokens
• For all q-grams in min-hash signature

– Find ETI(q-gram, coordinate, column)
– Find token t to which q-gram belongs, and weight of

this token
– Increment similarity metric of matching tid by

w(t)/|mh(t)|
• Fetch best K matching tid’s with similarity

> c.threshold

12

Query processing: Cont…

• Optimizations
– When incrementing similarity metric with matching

tid’s, only need to do it with new tid’s if the maximum
score possible with all remaining q-grams is >
c.threshold

• Optimistic short circuiting
– Order q-grams according to their weights
– Process only the first i q-grams
– Fetch matching tid’s
– But only fetch new tid’s if
– Stop when FMS of all K tid’s > c.threshold
– If don’t stop then increment i and repeat

 5

13

Extensions

• Consider token as another q-gram
– Split importance equally among itself and its

min-hash signature
• Assign weights to columns

– Domain dependant
• Token transposition

14

Experiments

• Clean reference set
• Error injection methods for unclean input tuples
• Accuracy

– FMS better than edit distance
– Min-hash signatures are

better than token-only
– Accuracy improves with

more hash functions
– Having tokens does not

negatively impact

15

Experiments: Cont…

• Efficiency: Processing time
– Much faster than naïve
– Query processing time decreases

with signature size
– Use of tokens improves processing

time
• Efficiency: ETI construction

– About 7 times the amount of time
taken to process 1 tuple using the
naïve algorithm

– But cost is amortized over repeat
queries

 6

16

Experiments: Cont…

• Average number of tid’s
fetched per input tuple
– More q-grams decrease set

sizes by better
distinguishing similarity
scores

• Average number of tid’s
processed per input tuple
– More q-grams increase the

number of tid’s processed
– Compensated by decrease

in number of tid’s fetched

17

Discussion topics

• Relevance: In what scenarios does IDF work and
distinguishes between more and less informative
tokens
– Cluster tokens together?

• Does weight calculation become an issue with
optimizations and optimal short circuiting?

• How to update ETI with new tuples or outdated
tuples?

• What is the role of the factor 2 in fmsapx?
• What if same q-gram belongs to multiple tokens

in the same column?

